Выпуск 128
2024
Мы устанавливаем оценки Боярского -- Мейера для минимизирующих функций нелинейных функционалов.
Библиография: 19 назв.
Литература
1. B. V. Boyarsky, “Generalized solutions of a system of differential equations of the first order of elliptic type with discontinuous coefficients,” Mat. Sb. 43, 451–503 (1957).
2. N. G. Meyers, “An Lp-estimate for the gradient of solutions of second order elliptic divergence equations,” Ann. Sc. Norm. Super. Cl. Pisa, Sci. 17, No. 3, 189–206 (1963).
3. V. V. Zhikov. “On some variational problems,” Russ. J. Math. Phys. 5, No 1, 105–116 (1997).
4. E. Acerbi and G. Mingione, “Gradient estimates for the p(x)-Laplacian system,” J. Reine Angew. Math. 584, 117–148 (2005).
5. L. Diening and S. Schwarzsacher, “Global gradient estimates for the p(·)-Laplacian,” Nonlinear Anal. 106, 70–85 (2014).
6. V. V. Zhikov and S. E. Pastukhova, “Improved integrability of the gradients of solutions of elliptic equations with variable nonlinearity exponent,” Sb. Math. 199, No. 12, 1751–1782 (2008).
7. Yu. A. Alkhutov and G. A. Chechkin, “Increased integrability of the gradient of the solution to the Zaremba problem for the Poisson equation,” Dokl. Math. 103, No. 2, 69–71 (2021).
8. Yu. A. Alkhutov and G. A. Chechkin, “The Meyer’s estimate of solutions to Zaremba problem for second-order elliptic equations in divergent form,” C. R. M´ecanique 349, No. 2, 299–304 (2021).
9. Yu. A. Alkhutov, G. A. Chechkin, and V. G. Maz’ya, “On the Bojarski–Meyers estimate of a solution to the Zaremba problem,” Arch. Ration. Mech. Anal. 245, No 2, 1197–1211 (2022).
10. G. A. Chechkin, and T. P. Chechkina “The Boyarsky–Meyers Estimate for divergent elliptic operators of the second order. Two spatial examples,” J. Math. Sci. 268, No. 4, 523–534 (2022).
11. Yu. A. Alkhutov and G. A. Chechkin, The Boyarsky–Meyers inequality for the Zaremba problem for p(·)-Laplacian,” J. Math. Sci. 274, No. 4, 423–441 (2023).
12. Yu. A. Alkhutov and G. A. Chechkin, “On higher integrability of the gradient of a solution to the Zaremba problem for p(·)-Laplace equation in a plane domain,” Lobachevskii J. Math. 44, No. 8, 3197–3206 (2023).
13. S. Zaremba, “Sur un problème mixte relatif à l’́equation de Laplace” [in French], Bull. Acad. Sci. Cracovie, Ser. A, 313–344 (1910).
14. G. A. Chechkin, and T. P. Chechkina “On higher integrability of solutions to Poisson equation with drift in domains perforated along the boundary,” Russ. J. Math. Phys. 31, No. 3, 407–417 (2024).
15. G. A. Chechkin, Yu. O. Koroleva, and L.-E. Persson, “On the Friedrichs inequality in a domain perforated along the boundary. Homogenization procedure. Asymptotics in parabolic problems,” Russ. J. Math. Phys. 16, No. 1, 1–16 (2009).
16. Yu. A. Alkhutov and A. G. Chechkina, “Many-dimensional Zaremba problem for an inhomogeneous p-laplace equation,” Dokl. Math. 106, No. 1, 143–146 (2022).
17. A. G. Chechkina, “On the Zaremba problem for the p-elliptic equation,” Sb. Math. 214, No. 9, 1321–1336 (2023).
Article MathSciNet Google Scholar
18. G. A. Chechkin, Yu. O. Koroleva, A. Meidell, and L.-E. Persson, “On the precise asymptotics of the constant in the Friedrichs inequality for functions, vanishing on the part of the boundary with microinhomogeneous structure,” J. Inequal. Appl. 2007, Article ID 34138 (2007).
19. V. G. Maz’ya, “On the continuity at a boundary point of solutions of quasilinear elliptic equations” [in Russian], Vestn. Leningrad. Univ. Mat. Mekh. Astronom. No. 13, 42–55 (1970).
Статья поступила в редакцию 15 августа 2024 г.
Информация об авторах:
Московский государственный университет им. М. В. Ломоносова
Москва, Россия
А. Г. Чечкина
Для переписки:
Дополнительная информация:
Английский перевод издан в Journal of Mathematical Sciences в 2024 г.
Chechkina, A.G. The Boyarsky–Meyers Estimates for Nonlinear Minimization Problems. J Math Sci 286, 290–298 (2024). https://doi.org/10.1007/s10958-024-07505-2
Цитирование статьи:
А. Г. Чечкина, ``Оценки Боярского --- Мейера для нелинейных задач минимизации'', Пробл. мат. анал. 128,95-112 (2024); English translation: Chechkina, A.G. ``The Boyarsky–Meyers Estimates for Nonlinear Minimization Problems,'' J. Math. Sci. 286, No. 2, 290-298 (2024).
Полный текст статьи - по запросу